research

Now You See Me, Now You Don't: The Hidden Truth In Our Faces!

Facial Expression and Emotion (and the hidden truth of our faces)

Paul Ekman (1993) examines cross-cultural research on facial expression, seeking to elucidate further understanding about four key questions: (1) “What information does an expression typically convey? (2) Can there be emotion without facial expression? (3) Can there be a facial expression of emotion without emotion? (4) How do individuals differ in their facial expressions of emotion?” (p. 384) Ekman reaffirms the cross-cultural agreement on six primary areas of universal categorization of facial expression: fear, anger, disgust, sadness, and enjoyment. Ekman also makes clear that further research is necessary to explain, “the question of what the face can signal, not what information it typically does signal” (p. 387). Important to this dissertation is Ekman’s assertion that, “facial expressions are more likely to occur when someone sees or hears a dynamic (moving) event and the beginning of the event is marked rather than very slow and gradual” (p. 388). Ekman claims that sometimes the only expression of emotion a person may exhibit might come from an area of the body other than the face, such as, “the voice, posture, or other bodily action” (p. 388). Ekman goes further by claiming that there is a possibility for an emotion to transpire without a facial or observable change in expression (p. 389). It may be that in situations where someone shows little or no observable change in expression that the emotional connection is weak, not present at all, or not entirely transferable to the person being observed. It is important to note that change may indeed be occurring, but these changes may be sub-visible, taking place at the micro-muscular level, indicating autonomic nervous system activity that is only detectable through sophisticated measurements with electromyography (EMG) sensors. Tomkins (1963) reports that facial activity is always part of an emotion, even when its appearance is inhibited. This could be based on cultural differences or any variety of other factors. The intensity of the emotional reception is somewhat correlated with the fidelity of the expression.

FACS.gif

Ekman (1985/2009, 1992, 1993) reports that individuals can experience emotion without observable changes in facial expression. Sometimes a person will respond to a stimulus with a head nod, a clenched fist, change in posture, or by walking toward or away from a situation. Even more intriguing is the change in expression that can be communicated through spoken words and audible vocalizations (i.e., moans, screams, or sighs), without necessarily expressing a visible change in the face. Ekman (1993) shows that it is equally true that a person can fabricate an expression of emotion without actually feeling an emotion (p. 390). Ekman states that, “although false expressions are intended to mislead another person into thinking an emotion is felt when it is not, referential expressions are not intended to deceive” (p. 390). It is most common to use referential expressions when referring to previous emotional experiences, specifically not experiences being felt currently. Examples of false emotional expressions aside from referential expressions are generally understood to be examples of deception. Efforts to deceive can be harmful or beneficial. A lie can conceal an important truth that harms a person in some manner. However, a lie can also allow a comedian to deliver a punchline at the appropriate time to maximize the intended comical effect, or give someone the courage to push past their fears when facing the insurmountable task of asking someone else to be their Valentine. The key is to fabricate expressions without specific emotional impetus.

Facial Action Coding System

Ekman and Friesen (1978/2002) published the Facial Action Coding System (FACS) manual, with a robust revision in 2002. This publication is a comprehensive guide for measuring facial expressions and behaviors. The manual includes the complete 527-page guide to various facial expressions, a 197-page investigator’s guide, a score checker protocol (included for the FACS test, published and sold separately), and a variety of example photos and videos are also included. The manual is a comprehensive system for describing all observable facial movements; it breaks down facial expressions into individual components of muscle movements that represent changes in behavior and emotional response to a given stimulus. Subsequent publications have featured subtle and microexpressions. Whether you can see them or not, there are a great many truths hidden in the expressions of our faces. Are you looking closely enough to find them?!

FACS 2.jpg

Structure of the Observed Learning Outcomes (SOLO): A Taxonomical Bridge

Structure of the Observed Learning Outcomes: A Taxonomical Bridge

Teaching practice is better informed with the knowledge of surface and deep processing, its role in learning, and the transfer-appropriate potential for student achievement in schools. However, these subsurface processes represent styles of thinking and learning – not necessarily physical behavior. In order for teachers to more fully utilize this information and synthesize strategies that support developing these processes, a correlated taxonomy will be useful. The Structure of the Observed Learning Outcome (SOLO) taxonomy is a widely recognized and accepted tool for showing changes in complexity of understanding. McMahon and Garrett (2016) report that,

SOLO is a useful contemporary tool that incorporates ... aspects of former taxonomies (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956; Merrill, 1971; Gagne, 1977/1984) in that it studies the cognitive complexities of a learner’s response to a given learning stimulus... [SOLO] emphasizing the observation of student learning cycles to describe the structural complexity of a particular response to a learning situation through five different levels: prestructural, unistructural, multistructural, relational, and extended abstract. (p. 422)

This approach more thoroughly examines changes in thinking by addressing changes in observed behavior. Just as Aha! moments represent sudden and unexpected cognitive illumination when a solution is found, along with their observable correlates, SOLO taxonomy represents a classification tool for the physiological behavior in learners as it changes over the complete cognitive continuum. This rubric for progression is a practical framework for teachers to evaluate achievement, “in a language that is generally applicable across the curriculum” (Biggs & Collis, 1989, p. 151). SOLO taxonomy is a form of measuring students’ understanding of subjects, from the introduction of a concept to a student’s expertise with it.

According to Biggs and Collis (1982/2014), who first introduced this taxonomy, SOLO is, “based on the observation that, over a large variety of tasks and particularly school based tasks, learners display a consistent sequence, or ‘learning cycle,’ in the way they go about learning them” (p. 152). In essence, as a learner moves from a superficial understanding of the components of a concept towards a deeper processing of the concept’s features, the taxonomy accurately shows these progressions in a manner that makes learning more easily observed by teachers. The final mode in the SOLO taxonomy suggests learners’ ability to extend comprehension into a final transfer-application understanding. The SOLO spectrum from prestructural to extended abstract is also analogous to the cognitive change represented when introducing a stimulus to a learner through to the development of an Aha! moment. Biggs and Collis (1989) discuss congruency among similar theories that support neo-Piagetian models (Case, Hayward, Lewis, & Hurst, 1988; Fischer, 1980; Fischer & Pipp, 1984; Halford, 1982), distinguishing, “between learning and development in a way similar to that suggested here [SOLO] with their terms ‘optimal level’ (the last mode reached) and ‘skill acquisition’” (p. 157).

Hunt, Walton, Martin, Haigh, and Irving (2015) studied the implications of school-wide adoption and application of the SOLO taxonomy to inform teaching and learning in a secondary environment. Hattie and Purdie (1994) were among the first to show that SOLO taxonomy is useful and effective for training teachers on how to structure questions, design activities, and to matriculate through modes of learning along the SOLO hierarchy in multiple curricular areas. Hattie and Purdie also showed that teachers indicated using SOLO taxonomy for accomplishing learning objectives, surface and deep processing, and found it much easier and more effective to use. Hattie, Clinton, Thompson, and Schmidt-Davis (1997) indicate in their research that,

expert teachers are more likely to lead students to deep rather than surface learning. These teachers will structure lessons to allow the opportunity for deep processing, set tasks that encourage the development of deep processing, and provide feedback and challenge for students to attain deep processing. (p. 54)

SOLO seems to promote stronger deep processing effects for teachers and with students, likely due to a reliable and understandable hierarchy for witnessing change in a learner’s thinking and cognition. In all of these studies, it is clear that surface and deep processing strategies are embedded into practices that are reflected through SOLO, and opportunities to inform and improve teaching practice are present.