What's the Difference Between Teacher Quality and Quality Teaching?

Contemporary researchers have published quantitative and qualitative research which examine learning in classrooms, particularly emphasizing learning outcomes and the effects of teacher quality and quality teaching in classrooms (Biggs, 2012; Gardner, 2011; Hattie 2016; Marzano, Frontier & Livingston, 2011; Nuthall, 2007). These two categories have specific influences and observable outcomes. Quality teaching and teacher quality both have tremendous impact on positive outcomes for students, particularly with regard to creating opportunities for moving learning objectives between surface processing and deep processing – at times into transfer-appropriate strategies for learning.

Recent arguments have been made that help to differentiate between quality of teachers and quality of teaching (or teaching efficacy) (Hanushek, 2011; Harris & Sass, 2011; Taylor, Roehrig, Hensler, Connor, & Schatschneider, 2010). Darling-Hammond and Jaquith (2012) posit that teacher quality and quality of teaching should be considered independently, but as equally important. Darling-Hammond and Jaquith argue that the talents, personal mannerisms, and paradigms each teacher draws from in order to inform their teaching should not be evaluated independently of factors that enable, “a wide range of students to learn” (p. i), asserting that teaching efficacy,

is also strongly influenced by the context of instruction: the curriculum and assessment system; the “fit” between teachers’ qualifications and what they are asked to teach; and teaching conditions, such as time, class size, facilities, and materials. If teaching is to be effective, policymakers must address the teaching and learning environment as well as the capacity of individual teachers. (p. i)

It is crucial to understand these distinctions while exploring the potential for introducing insight learning opportunities into learning environments. Teachers may be effective at implementing pedagogy, but lack the requisite training to maximize Aha! moments in learning. Similarly, an expert pedagogue may be inducing preconditions for Aha! moments but may lack the effectiveness to maximize their effect in learning, especially for moving from superficial information acquisition to deeper thinking strategies and transfer-appropriate opportunities.

Goe (2007) outlines a comprehensive framework for better understanding teacher quality in terms of its effect upon student success, following on from the concern with measurable and broad impacts upon the widest range of students. The graphic representation in Figure 2 presents teacher quality as a combination of inputs and processes, and student outcomes as measurable effects of teacher quality. These inputs and processes include teacher certification, beliefs, instructional delivery, interactions with students, teacher test scores and experience, and classroom management. Student achievement is both an input and output, often part of teacher evaluations and other forms of feedback influencing practice. Inputs, processes, and feedback from outcomes (generally in the forms of grades from student assessment) all inform the basis for teacher quality.

Goe .png

Figure 1. Graphic representation of a framework for teacher quality (Goe, 2007, p. 9).


Archimedes’ discovery of water displacement as a method for measuring the volume of an object was among the first recorded instances of the Aha! moment (Kounios & Beeman, 2015). The account of Archimedes’ transcendent moment can be summed up briefly: King Heiro II challenged Archimedes to determine whether a votive crown that had been made for him was made of pure gold, as represented to him, or if the goldsmith had adulterated it with some other metal. Archimedes grappled for some time with the problem of how to authenticate the crown without damaging it until one day, as he was lowering himself into his bath, he observed the correlative rise of the water level and had a flash of inspiration. He is said to have shouted Eureka! (“I’ve found it!”). His observation of displacement led to a profound insight – his Aha! moment, which was the breakthrough that allowed him to solve this problem. His Aha! moment enabled his thinking to move from surface to deep, thereby producing a theory for the measurement of the volume of an object without damaging it. More important than what Archimedes was attempting to accomplish, was how his mind now managed the exact same set of observations that most humans have when wrestling with a problem. His thinking exhibited the capacity to take seemingly disconnected ideas (i.e., the water rising in the bath, the volume of gold, and finding a way to determine legitimacy without damaging the artifact) and combine specific factual knowledge in order to provoke an Aha!, a breakthrough that created a sudden and unanticipated solution. This indicates an ability to compare and manipulate concepts, which is further up the taxonomy on the SOLO scale, not to mention the Piagetian scale of conceptual facility (1950). From the point of view of an observer, the expressive exuberance of Archimedes’ eureka made it possible to actually see him exhibiting a new level of facility with the concepts available to him. If that observational mechanism can be brought into any learning environment, along with a rich understanding of how and when human beings achieve milestones along the path to greater conceptual facility, then our instructional practice will be that much more powerful and effective.

An insight is a quantum leap in thinking. There is a distinct before and after, and history is filled with similar stories of men and women, young and old, and their Aha! moments. Whether these moments are connected to monumental or to less consequential but still important moments of insight, they are part of the fabric of the human journey because they are a universal form of human learning. Galileo looked to the heavens and observed the orbit of the Earth (Kounios & Beeman, 2015), suddenly forming theories about orbital eccentricity; Sir Isaac Newton had an Aha! moment when he saw the apple fall from the tree (Gleick & Alexanderson, 2005), later going on to describe universal gravitation; Einstein worked through a thought experiment when a sudden breakthrough allowed him to conceive what became his theory of relativity (Einstein, 1922/2003); and Sir Paul McCartney woke up one morning, after a long series of shows, and in his Aha! moment he crafted (“Yesterday”), a song that has since gone on to become the most- recorded song in history (McCartney, 2009). In each of these examples, the sudden realization could not have been predicted. The significance of these moments generally causes the learner to refer back to the moment in a sort of before-and-after manner – a life moment.

The practice of seeking these moments of insight, their subsequent outcomes, and the transformation in learning that takes place as a result can be of great value in pedagogy. My research has collected, documented, and analyzed the observable instances of these Aha! moments, and used the term “correlates” to signify both a possible pattern to observation and a taxonomy of insight that occurs for individual students in complex ways. The goal is not only to identify these moments, but also to produce a template for techniques, methods, and practices that learning leaders may adopt or implement in their curricula in the hope of creating the fertile preconditions that facilitate production of these moments.